Woodrow Bellamy III

[Avionics Magazine 01-04-2017] The Civil Aviation Authority of Israel, with the help of third party Air Navigation Service Provider (ANSP) Hughes Aerospace, has deployed the nation’s first Required Navigation Performance Authorization Required (RNP AR) at its busiest international airport, Tel Aviv’s Ben Gurion (LLBG). Along with reducing the noise and the environmental impact of aircraft approaches on surrounding communities, the new approach will help keep aircraft flying into Ben Gurion safe from rocket attacks that previously suspended international flying to Israel.
Ben Gurion International Airport’s new RNP AR procedure featured in the ICAO AIP. Photo: ICAO.
The new RNP AR approach has been deployed for Ben Gurion’s Runway 30. RNP AR is an advanced Performance Based Navigation (PBN) approach procedure that requires prior authorization from a civil aviation authority. It enables an aircraft to fly a predetermined path between waypoints by placing an aircraft’s airport approach on a curved, precise path where the descent and positioning is constantly augmented by satellite-based navigation signals. Although Israel has other less advanced PBN procedures in place, the latest deployment is its first RNP AR procedure.
In other countries, RNP AR and other types of PBN procedures have been deployed at airports primarily to compensate for increases in air traffic volumes, reduce noise and environmental impact on communities located near airports and reduce fuel burn for aircraft. The use of PBN also allows operators to take advantage of the advanced navigation systems capabilities featured on newer airframes. At Ben Gurion, all of the above were goals for the deployment, with the added need of keeping aircraft flying into the airport within Israeli airspace and out of harm’s way.
Ben Gurion is surrounded by active air force bases, and the city of Modi’in sits in the path of one of the airport’s main runways, which can create challenges. “This is an environmental issue, but also creates limitations in times of conflict in which the ‘Iron Dome’ system wants to protect the city,” Libby Bahat, head of the aerial infrastructure department for the civil aviation authority of Israel, told Avionics. “This procedure is the only one that can totally avoid the airspace over the city, allowing the Iron Dome to remain active, and maintaining both protection and safety of civilians on the ground, and in the air.”
In 2014, several major European and U.S. carriers temporarily stopped flying to Israeli airports after debris from an intercepted rocket fell near Ben Gurion. The Iron Dome system Bahat noted is a mobile air defense system Israel uses to intercept and destroy short-range rockets designated for populated areas.
Bahat said the new procedure will reduce about 3 track miles flown into the airport from each approach.
“It will also significantly reduce noise to the city of Modi’in, thus perhaps being one of the most overall quiet procedures to LLBG — taking into account the numbers of affected inhabitants,” he said. “In times of conflict this could be the only approach that could be available for LLBG when RWY30 is in use — as it is the only one that does not fly over Modi’in city.”
According to Bahat, the biggest users of the airport are Israeli carriers such as El Al and international carriers such as Turkish Airlines and Lufthansa. While the new procedure has been designed and published in the International Civil Aviation Organization’s (ICAO) Aeronautical Information Publication (AIP), Bahat says Israeli carriers are starting fleet renewals and will be ready to use it within the next 1 to 2 years.
Chris Baur, CEO of Hughes Aerospace, said that the procedure was validated in a Boeing 737 simulator and that El Al Airlines also completed a flight validation for it. Baur, who is also an experienced commercial airline and military pilot, said carriers flying to Ben Gurion historically have had trouble maintaining stabilized approaches to RWY30 because of the trajectory-based maneuvering required of pilots to remain stabilized to have a stabilized path to the runway.
 “It’s a challenging runway to land on because you have to fly a downwind, and then the winds can be quite strong sometimes coming off the Mediterranean Sea. We extensively used radius to fix legs to maneuver the aircraft and keep it within Israeli airspace on the new approach,” said Baur.
 From an avionics equipment perspective, noted Baur, most of the U.S. carriers that fly there could use the new procedure immediately, since most of the major U.S.-based airlines are RNP-certified and most of the aircraft that would land there would be RNP-capable aircraft.
 While Israel’s civil aviation authority has not officially committed to more RNP AR deployments, Bahat said it could be useful for an upcoming new airport currently being built. The Timna region’s Eilat airport, which is named after Israeli astronaut Ilan Ramon and his fighter-pilot son, Assaf, is expected to open next year.

“Again, it is a complex, tight airspace, with terrain and Iron Dome issues,” said Bahat. “RNP AR might solve many issues there. Due to issues that arose in previous conflicts, GLS [Ground-Based Landing System] might assist GPS jamming issues in LLBG, especially in times of conflict.”

http://www.aviationtoday.com/av/air-traffic-management/Israel-Deploys-First-RNP-AR-at-Ben-Gurion_89327.html

Continue reading

Aviation Week & Space Technology
John Croft
Thu, 2016­12­15 04:00

 
Israel is showing the aviation industry a new use for noise­ reducing and efficiency­ boosting performance­ based navigation (PBN) procedures: avoiding the rocket’s red glare. More to the point, the precisely defined narrow paths used in required navigation performance (RNP) approaches, a type of PBN procedure, could in theory allow the country to keep all runways at its main international airport, Ben Gurion, and others open during conflicts with its neighbors. The procedures, which are tied to avionics performance rather than ground ­based infrastructure, also could help with community relations by helping to curb runway activity in noise­ sensitive areas in
the compact country, where the military controls most of the airspace.

From a military perspective, an advantage of RNP is it can precisely define routes that avoid major cities so the air
force, if ever called upon, could use its Iron Dome interceptor system to destroy any incoming rockets and mortars
without fear of striking a civilian aircraft.
“In times of conflict, RNP allows the aircraft to not be over major cities, areas Hezbollah and Hamas [would] very
much like to target,” says Libby Bahat, head of the aerial infrastructure department for Israel’s Civil Aviation
Authority (CAA), of the country’s enemies to the north and west, respectively. “Iron Dome allows the air force to
defend those cities and yet allow normal traffic and normal civilian aviation to go into Ben Gurion [Airport].”

The CAA in November declared operational the country’s most precise PBN procedure to date: an RNP authorization required
(RNPAR) approach designed by Houston based third party air navigation services provider Hughes Aerospace Corp. The RNPAR
to Runway 30 at Ben Gurion, which is near Tel Aviv, a procedure that requires an airline to obtain special approval from regulators, replicates a straight in
instrument landing system (ILS) approach with vertical and horizontal precision guidance, but adds the element of curves. Other PBN
procedures in use at Ben Gurion are less precise.The Runway 30 RNPAR features “radius to fix” turns that guide an aircraft arriving from the west through a tear drop shaped pattern over the ground to remain clear of military airspace to the south and east of the airport.

The approach has vertical guidance and minimums of 280 ft. above the runway, twice as low as the previously
available RNP approach to Runway 30. The RNPAR has other benefits. Chris Baur, president of Hughes Aerospace, says use of the approach, which took
two years to develop in large part because of the complex airspace, also reduces track miles and saves fuel. He
explains that the RNPAR’s radius to fix design offers better “containment” than legacy RNP procedures, an
important element given the strong winds that typically blow eastward from the Mediterranean Sea. Baur says the
CAA validated the approach with Hughes in a Boeing 737 simulator in Houston and later at Ben Gurion, using its
Cessna Citation Mustang light jet.

Israel began deploying the PBN procedures in 2013 following a renaissance of sorts within the CAA, ignited by the
FAA’s downgrade of the country’s safety ranking to Category 2 from Category 1 in 2008. “It was a very good move in
the aviation history of Israel,” says Bahat of the changes spurred by the FAA action. Along with updating 80 year old
aviation laws that apparently were in place under the British Mandate before the country’s founding in 1948, the
CAA tripled its workforce to 120, adding “younger people from the industry that were still flying and knew the
business very well.” The FAA restored Israel’s ranking to Category 1 in late 2012.

“One of the steps we did at an early stage was to explore PBN procedures,” notes Bahat, “not only for Ben Gurion,
but for the entire route structure for the country.” The CAA published its first PBN procedure in 2013, and one new
approach to a runway about every six months thereafter. In an unusual move, Ben Gurion asks aircraft to use
Runway 30 and only with a PBN approach between of 11 p.m. and 1 a.m. “We received many requests to allow non PBN
airlines to use the airport at that time, and we refused,” says Bahat.

The CAA already has published PBN procedures for its new Ramon International Airport near the southern city of
Eilat, a facility ideally suited for the technology, as it is surrounded by mountains with large cities nearby. Ramon is
scheduled to open in April 2017, and eventually is expected to have an ILS as well. “It will leave a lot of airspace free
for Iron Dome and keep Ramon always open,” says Bahat.

Whether Ben Gurion or other airports will remain open to international airlines during times of strife is unclear.
During the most recent conflict, in July 2014, the CAA kept Ben Gurion open, but the FAA banned U.S. aircraft from
flying there for 36 hr. due to concerns over rockets and shelling. The European Aviation Safety Agency followed the
FAA’s lead and also instituted a short term ban. According to Bahat, during conflicts, the airport has more
operational freedom as its controllers can waive noise restrictions on some approaches.

There are no guarantees that RNPAR procedures will make a difference for U.S. carriers, which account for about one third
of the traffic at the airport, if similar conflicts occur. However, Bahat says the CAA is “continuing cooperation with the FAA and the U.S. government in a very close,
detailed way” and that the U.S. ambassador to Israel, Daniel Shapiro, has been to the airport several times during
the past two years and appears to be knowledgeable about traffic flows and the Iron Dome. “He understands the
very detailed operational risk analysis that we do and how we can have a very safe civilian aviation, and just a couple
miles away have Iron Dome protecting a city. “If I have the FAA confident to keep [allowing] flying to Israel, I will have one big worry off my head,” he adds.

 

Source URL: http://aviationweek.com/commercialaviation/threatsnoisekeysisraeliperformancebasednavigation

 

Aviation Daily August 2, 2016  p.4

John Croft
Wikimedia Commons
WASHINGTON—A slate of donated required navigation performance (RNP) procedures for Tacloban City Airport (Daniel Z. Romualdez Airport) in the Philippines may set the stage for further improvements in the island nation’s ground-based aerial infrastructure.
The satellite-based procedures—one GPS approach, one required navigation performance (RNP) arrival and one RNP departure—were donated by Honeywell and partner company Hughes Aerospace, a provider of performance-based navigation procedures worldwide, in the wake of Typhoon Haiyan in late 2013. The storm knocked out the airport’s main terminal and its primary instrument approach aid, a very high frequency omnidirectional range (VOR) station. The RNP procedures are the first to be published in the Philippines.
The new GPS approach to Runway 36 offers a minimum descent altitude as low as 320 ft. compared to 745 ft. for the VOR approach. Aside from the lower minimum altitude, the satellite-based procedure also features fewer track miles and vertical descent guidance through the aircraft’s flight management system.
The RNP arrival procedure connects the non-radar en route environment to the Runway 36 approach, providing for a seamless, continuous descent to the runway. The design, featuring
multiple transition points along the circumference of a virtual circle around the airport, is specifically tailored to the local weather.
“The type of design lends itself well to an area with convective activity,” Chris Baur, president and CEO of Hughes Aerospace, said. “If you had weather that was shutting down one quadrant (of the circle), you can slide along the ring to pick up another transition to get to the airport.” Similarly, the RNP departure procedure seamlessly connects the airport to the en route environment for departures.
The new procedures were originally developed to be in place in advance of a papal visit in January 2015, however final approval by the Civil Aviation Authority of the Philippines (CAAP) did not occur until May 2016, with the three procedures going live in late June. Most likely users will include Philippine Airlines and Cebu Pacific, all of which must receive approval from the CAAP.
A Honeywell official based in the Philippines said in addition to a building an RNP approach to Runway 18 at Tacloban, the CAAC will also likely target “four or five” other airports that currently cannot receive airline traffic at night due to a lack of approaches and runway lights.

Thursday, August 11, 2016

Woodrow Bellamy III

[Avionics Today 08-10-2016] Nearly three years after one of the deadliest typhoons on record swept through the Philippines, the Asia-Pacific nation’s latest satellite-based navigation procedures have become operational within its airspace. The new procedures were donated by collaborative work performed by Honeywell Aerospace and Hughes Aerospace. Both companies worked with the Civil Aviation Authority of the Philippines (CAAP) and local airlines to deploy the latest Performance-Based Navigation (PBN) procedures in the country in late June.

Cebu Pacific A320. Photo: Cebu Pacific Air.

In 2013, Typhoon Haiyan created a 13-foot storm surge in the Leyte Gulf that swept through the city of Tacloban killing more than 6,300 people and destroying nearly 1.1 million homes. After the storm, one of the only ways to get relief efforts to residents in the Tacloban region was through the Daniel Z. Romualdez Principal Airport. However, the airport itself also suffered major damage, as the storm destroyed its Very High Frequency (VHF) Omnidirectional Range (VOR) ground-stations and landing lights. That limited air relief operations at the time, but ultimately lead to a new satellite-based solution, the Philippines’ first Required Navigation Performance (RNP) 1 Standard Arrival Routes (STARs), Standard Instrument Departures (SIDs) and Global Navigation Satellite System (GNSS) approach into the airport. All of the new procedures were published in the International Civil Aviation Organization (ICAO) Aeronautical Information Publication (AIP) in June 2016.

 

“After the typhoon destroyed the VOR, we realized this was not the first time this happened and it was not going to be the last. In collaboration with Hughes Aerospace, we offered an immediate free-of-charge GNSS approach into the airport, so that when this happens in the future, the whole relief effort is not reliant on ground-based navigation aids,” Brian Davis, vice president of airlines, Asia Pacific at Honeywell Aerospace, told Avionics Magazine.

 

According to the International Federation of Red Cross and Red Crescent Societies 2015 World Disasters report, the Philippines is “one of the most disaster-prone countries in the world,” with more than 103 million people reportedly affected by natural disasters between 2005 and 2014.

 

The new satellite-based procedures help bring the Philippines into the next generation of commercial air transportation operations, as well. In December 2012, ICAO released a progress report on PBN implementation in the Philippines, showing the country’s first RNP approaches were implemented at two international airports, Ninoy Aquino International Airport (NAIA) and Puerto Princesa Airport, and one domestic airport, Iloilo Airport.

 

Other countries, especially western nations, are in the process of de-commissioning unused VOR stations. In the United States for example, the FAA released an official policy statement in July 2016 listing 308 VORs throughout the National Airspace System (NAS) that it is currently considering decommissioning.

 

While the CAAP ultimately ended up replacing its typhoon-destroyed VOR, Davis said all aircraft using the airport are equipped to fly the newly published PBN procedures, and airlines have welcomed them. Cebu Pacific, a low-cost carrier based in the Philippines, aided the effort to deploy the new satellite-based navigation procedures by allowing Hughes and Honeywell to use its AirbusA320 simulator to test the new procedures before they were made operational.

 

“We were able to lower the landing minimums over the traditional VOR approach. The new GNSS approaches were published in the AIP at the end of June, when the airlines flying there get their latest navigation database updates in their FMS, those approaches are there. We’ve received positive feedback from Philippines Airlines, and Cebu Pacific; they like the approaches because of the lower landing minimums, but they’re also using the existing [Standard Terminal Arrival Route procedures] STAR, which is now connected to the GNSS approach. So air traffic control already knows the airspace, the pilots already know the airspace, so not only was it a helpful on the landing minimums it was easy and useful to fly because they’re already used to that approach and direction into the airport,” Davis added.

 

The actual work between Honeywell, Hughes and CAAP to implement the new procedures began in 2014, Chris Baur, CEO of Hughes Aerospace, told Avionics Magazine. During the process of coding and flight-testing the new procedures, Hughes became the Philippines’ only licensed third-party Air Navigation Service Provider (ANSP), as it was required by CAAP to provide to provide the new procedures at the airport.

 

“These are the first RNP 1 procedures in the Philippines,” Baur said, noting that the new GNSS approach is a continuous descent approach that avoids flying to the VOR station and then outbound from the VOR.

 

“With PBN you can put the airplane where it needs to be. It reduces the amount of track miles flown, reduces the aircraft’s environmental impact, and fuel burn. It’s also continuous descent approach, versus the existing one where they had to fly to the VOR and then fly outbound from the VOR to make the final approach into the airport.”

 

Davis says the Honeywell-Hughes partnership, which has completed deployments for several other PBN projects in China, and Myanmar, among other regions, is currently in talks with Indonesia’s civil aviation authority to bring similar procedures to Indonesian airspace.

 

“Now that we have the first one to be published in the Philippines we’re going continue to expand PBN to the rest of the terrain-challenged areas of the Asia Pacific,” said Davis. “Right now, Indonesia has one of the highest rates of runway excursions. One of the things that we’re working on is promoting our Smart Landing Smart Runway capability, which is just a simple software upgrade to the Honeywell EPGWS computer, which is installed on 85 percent of the in-service fleet. So that is one of the technologies we’re working on for runway excursions, but the other key initiative is to usher in more PBN approaches throughout the region.”

http://www.aviationtoday.com/av/commercial/Philippines-Airspace-Turns-on-New-Satellite-Based-Navigation_88412.html

With the first operations utilizing performance-based navigation taking place in Europe, we take a look at how the concept may offer significant potential to improve reliability and safety in the helicopter industry.

By  Mario  Pierobon                     
As part of the PBN concept there exist two main macro-categories of navigation specifications: area navigation (RNAV) and required navigation performance (RNP). The main difference between RNAV and RNP  is the requirement for on-board performance monitoring and alerting. A navigation specification that includes a requirement for on-board navigation performance monitoring and alerting is referred to as an RNP specification. One not having such a requirement is referred to as an RNAV specification.. The capability to undertake performance-based navigation (PBN) for both rotorcraft and fixed-wing aircraft is one of the “future” navigation concepts being embraced by industry experts around the globe in the present. Representing a shift from sensor-based navigation, the PBN concept sees performance requirements identified in navigation specifications, which also identify a choice of navigation sensors and equipment to be used to meet the performance requirements.

According to the International Civil Aviation Organization’s (ICAO’s) PBN manual (Document 9613), the PBN concept specifies that aircraft RNAV and RNP system performance requirements must be defined in terms  of their accuracy, integrity, continuity and functionality.

Under PBN, generic navigation requirements are defined based on operational requirements. Operators then evaluate options in respect of available technology and navigation services, which could allow the requirements to be met. An operator thereby has the opportunity to select a more cost-effective option, rather than a solution being imposed as part of the operational requirements. Technology can evolve over time without requiring the operation itself to be reviewed, as long as the expected performance is provided by the RNAV or RNP system, according to ICAO.“The PBN concept suggests that RNAV specifications are effectively legacy specifications and that no new RNAV specifications will be developed,” states a PBN briefing paper from the European Organisation for the Safety of Air Navigation (Eurocontrol). “Indeed, PBN’s sights are firmly set on RNP which relies primarily on the use of satellite technologies. This explains why all the new navigation specifications in the 2013 update to the PBN manual are RNP specifications.”

FORGING A PATH

In Europe, some of the first applications of PBN have already taken place using the Localizer Performance with Vertical Guidance (LPV) approach and RNP 0.3, which are both part of the PBN family of navigation specifications.

In June 2015, a CHC Helikopter Service Sikorsky S-92 equipped with dual Universal Avionics SBAS-Flight Management Systems (FMS) car- ried out the first LPV approach to Florø, one of the first Norwegian air- ports to be equipped with LPV capability.

In Switzerland, Rega, one of the country’s leading helicopter emergency medical service (HEMS) providers, has been working closely   with the Swiss Air Force on a RNP 0.3 low flight network (LFN) that links hospitals as well as military airfields and landing sites. The Norwegian Air Ambulance is involved in a similar project to achieve an RNP 0.3 instrument flight rules (IFR) route net in Norway.

RNP 0.3 is a navigation specification for all phases of helicopter operations with a requirement for on-board navigation performance monitoring and alerting. Under this navigation specification, the required accuracy is 0.3 nautical miles (nm) for all phases of flight, which means that during operations in airspace or on air traffic service (ATS) routes designated as RNP 0.3, the lateral total system error must be within ±0.3 nm for at least 95 percent of the total flight time. The along-track error must also be within ±0.3 nm for at least 95 percent of the total flight time. To meet this performance requirement, a flight technical error of 0.25 nm (95 percent) may be assumed.

With regard to the navigation needs of helicopter operations, ICAO’s PBN manual highlights that: “The helicopter community identified a need for a specification that has a single accuracy of 0.3 nm for all phases of flight, recognizing that such a specification would enable a significant part of the IFR helicopter fleet to obtain benefit from PBN.”

According to ICAO, the operations envisaged by the helicopter community included reduced protected areas, potentially enabling separation from fixed-wing traffic to allow simultaneous non-interfering operations in dense terminal airspace, as well as low level routes in obstacle- rich environments to reduce exposure to icing environments. Seamless transition from en route to terminal route was also envisaged, as well as a need for more efficient terminal routing in obstacle-rich or noise-sensitive terminal environments — something particularly relevant to HEMS IFR operations between hospitals, and around airports supporting the offshore industry. Other operational needs leading to the development of the RNP 0.3 navigation specification included transitions to point in space (PinS) approaches and for departures.

OPERATIONS ENABLED

“Most modern IFR twins now come suitably equipped [for PBN] as standard,” Steve O’Collard, a technical pilot at CHC Helicopter, told Vertical. “In addition, there are after-market systems that are fully compatible.” According to Robert Clare, Universal Avionics’ director of sales, there are approximately 120 S-92s in the field with his company’s SBAS- FMS system installed.

Indeed, significant benefits are enabled by LPV approach procedures  in that they allow approaches using on board global positioning system (GPS) rather than ground-based systems such as the instrument landing system (ILS). “LPV permits approaches to lower minima in cases where the local ground-based systems may not [such as VOR or NDB, which do not permit the same degree of accuracy], or where there are no ground-based systems, with potentially significant operational benefits,” said O’Collard. “The flight path is not affected by terrain interference; indeed ground-based signals can be ‘bent’ by terrain or by interference from, for example, other aircraft.”

With regard to PBN aeroplane operations, terminal and en-route navigation requires less navigation accuracy (RNP 1 and RNP 2, respectively). “ICAO PANS-OPS now allows RNP 0.3 operations for helicopters ‘in all phases of flight,’ ” said Lukas Kistler, lead pilot of Rega’s EC145 fleet. “This enables more flexible helicopter-dedicated en route IFR segments in difficult terrain with many restricting obstacles. By minimizing the size of the obstacle-free corridor, the routes can be designed at lower altitudes where generally warmer temperatures prevail. This in turn allows non de-iced helicopters to operate IFR on days where higher airways are already in an icing zone.”

In Europe, there are not many large-scale implementations of PBN for helicopter operations beyond the use of LPV approaches to aerodromes that have published RNP approach procedures to LPV minima. The acceptable means of compliance to the PBN section of European Aviation Safety Agency (EASA) air operations regulations dealing with operations that require specific approval aren’t even published for the RNP 0.3 specification. This means that operators wanting to implement RNP 0.3 — to derive the benefits of PBN for phases of flight other than the approach phase — must refer to ICAO’s PBN manual.

Kistler said that bad weather currently prevents around 600 people  from receiving emergency assistance from the air each year in Switzerland. “We see the possibility to increase the number of patients we are able to transport in marginal weather conditions [through the LFN],” he said. “We also believe that by routinely flying on an established, well known IFR network, we can further improve the level of safety as opposed to NVIS-aided VFR [visual flight rules] night operations.” According to Kistler, another setting where RNP 0.3 helicopter operations could provide benefit to both helicopter operators and wider air navigation systems are IFR transit routes through busy airspace at inter- national airports.

Over in the U.S., Hughes Aerospace Corporation, based in the Woodlands, Texas, is one of just two companies both endorsed by ICAO and certified by the Federal Aviation Administration (FAA) to develop, validate, and maintain FAA public (part 97) IFR procedures, as well as special IFR procedures for helicopter and fixed-wing operators worldwide. Hughes implemented the first public RNP approach procedures at Chicago O’Hare International Airport, which the company still maintains on behalf of the FAA. “We also develop and maintain helicopter PBN procedures,” Chris Baur, president and chief executive officer of Hughes Aerospace, told Vertical. “In the U.S., there are no IFR heliports, hence [helicopter] IFR procedures are categorized as special instrument procedures, developed as “PinS” or ‘Point in Space’ procedures. . . . There are [also] hundreds of special LNAV instrument approaches and departures, along with more contemporary LPV procedures.”

The company has worked with the FAA to prototype the use of the Wide Area Augmentation System (WAAS) and the use of “RF” (radius-to-fix) segment coding for

helicopters, leveraging the accuracy level and superior containment of WAAS and advanced ARINC 424 binary code. Baur noted that the FAA does not characterize helicopter RNP instrument approaches as RNP 0.3 naviga- tion, but it recently published criteria for RNP

0.3 IFR low level routes, supported by WAAS. Raw GPS has an accuracy of 10 meters, but if augmented by either space-based or ground- based augmentation systems, it can achieve accuracy levels of one meter and 10 centime- ters, respectively.

“In order to execute an RNP approach, you need to have special equipment and aircrew training,” said Baur. “The equipage requirements include dual flight management computers [FMC] and inertial reference systems [IRS]. In the event of a catastrophic reception failure of GPS updating to the FMC, the IRSs are used to perform an extraction maneuverer [missed approach], providing sufficient contain- ment until the aircraft is positioned at a safe altitude. Helicopters do not normally have a dual inertial reference system — the project we did with the FAA was to see illustrate how operators could use the containment accuracy of WAAS (SBAS) demonstrated at 0.3 RNP to alleviate the need to have [one].”

TECHNICAL AND OPERATIONAL REQUIREMENTS

For a helicopter company to perform PBN operations, O’Collard said it must first install equipment that satisfies the “aircraft requirements” of navigation specifications. Next, it must have operational approval from the applicable civil aviation authority to use the equipment. “This approval will cover not only normal and abnormal operational procedures, but also training,” he said.

ICAO’s PBN manual highlights that airworthiness certification and recognition of RNP 0.3 aircraft qualification alone does not authorize RNP 0.3 operations. “Operational approval is also required to confirm the adequacy of the operator’s normal and contingency procedures for the particular equipment installation applied to RNP 0.3 operations,” the manual states.

According to ICAO, the operating procedures to be developed, docu- mented and implemented include pre-flight planning, RNP 0.3 availability prediction, general operating procedures, RNP 0.3 standard instrument departure (SID) and standard instrument arrival route (STAR) specific requirements, as well as contingency procedures in case of loss of the RNP 0.3 capability.

The training program should provide sufficient training (in a simulator, training device, or aircraft) on the aircraft RNP system to the extent that the pilot is familiar with the content of the RNP 0.3 navigation specification in ICAO’s PBN manual. Flight crew training should also include required navigation equipment and minimum equipment list for operation on RNP 0.3 ATS routes and RNP system-specific information. Simulator and/or aircraft training should also be delivered to familiarize the flight crews with RNP equipment operating procedures and as contingency procedures.

To make it possible for the air navigation system to enable the high standards of PBN operations, a very peculiar system component comes into play: the variety of satellite based augmentation systems (SBASs) that operate in different regions of the world. While the GPS has been used successfully in aviation for many years, Universal Avionics said the basic technology does not produce adequate precision and accuracy to allow it to be used as a sole source of navigation. “The accuracy and integrity of GPS is greatly enhanced by the use of augmentation information from a variety of sources,” states a Universal Avionics’ document on SBAS. “[SBAS] augments the GPS signal to produce an increased accuracy, integrity, reliability and availability of information for aviation. With the decommissioning of legacy ground-based navigation systems, regional SBAS programs have grown substantially over  the past five years. This technology is a critical component of the FAA’s Next Generation [NextGen] program and the Eurocontrol SESAR [Single European Sky ATM Research] initiative.”

An SBAS consists of a network of precisely surveyed ground reference stations strategically positioned to monitor, collect and process satellite signals. The ground reference stations send satellite signal data to ground master stations, which then take measurements of signal delay and other errors (such as ionospheric and/or solar activity) that may impact the signal. Using the signal error measurements, master sta- tions develop corrections to the information obtained from the ground reference stations and send a corrected, or augmented, message to Geostationary Earth Orbit (GEO) communication satellites. These GEOs then broadcast the message to the internal SBAS receiver in an SBAS- capable FMS. Paul Damschen, Universal Avionics’ manager of airworthiness and flight operations, said the LPV approach does not require RNP 0.3 — in fact, it requires a much lower RNP value. “LPV approaches require a horizontal and vertical alarm limit of 50 meters, so positional accuracy to support those operations is much lower than basic RNP 0.3,” he said. “Basic RNP 0.3 does not require SBAS augmentation, and TSO C129 as well as TSO C146 equipment can support RNP 0.3 for en route, terminal, and approach. LNAV-only approach can be conducted under RNP 0.3, again, without SBAS augmentation.”

Several regional SBAS programs have been implemented so far, each complying with a common global standard. Therefore, all are compatible and interoperable, and do not interfere with each other. An operator with an SBAS-capable receiver can benefit from the same level of service and performance no matter which coverage area they are in. Existing and in-work SBAS include the WAAS in North America; the European Geostationary Navigation Overlay Service (EGNOS) in Europe and North Africa; the Multi-functional Satellite Augmentation System (MSAS) in Japan and GPS-Aided Geo-Augmentation Navigation (GAGAN) in the Indian subcontinent.

WHAT’S NEXT?

To achieve the high level of safety that RNP operations provide, espe- cially in terminal areas where approaches without a vertical glide path will be history, the airspace providers and the operators have a signifi- cant responsibility ahead of them. “While GSA in Europe is finalizing  the SBAS coverage to achieve lowest LPV minima at all airports, the national airspace providers at airports should be designing new RNP approaches to replace existing conventional approaches,” said Jørgen

Staffeldt, a type technical pilot of the S-92 at CHC Helicopter. “In parallel, the operators should be updating aircraft to SBAS capability and training the crew to achieve RNP authorization.

“On the other side, the helicopter OEMs should be working on the certification of aircraft to not just SBAS capability, but future NAV SPEC capability, including today’s RNP AR [Authorization Required] that cur- rently include Radius-to-Fix legs to be used in approach procedures, to achieve shortened and more flexible approaches,” Staffeldt continued. Baur noted that the several hundred public LPV procedures existing in the world are published for fixed-wing operations, while the majority of helicopter LPV procedures are special instrument approach procedures. “[Helicopter] instrument procedures in the United States are developed by third party service providers, such as Hughes Aerospace,” he said. “The FAA has issued Hughes with the authority to perform heliport evaluations, flight, simulator and obstacle evaluations as well as proce- dure maintenance.”

Baur notes that one of his company’s recent achievements has been to publish the first LP [Localizer Performance] helicopter approach procedure in the United States. “This type of approach provides sig- nificant benefit to the operator, in a situation where you are not able to provide the vertical guidance because the aircraft is WAAS [or SBAS] equipped but does not have the necessary equipage for LPV,” he said. “LP approaches provide lower minima than non-augmented LNAV approaches. The WAAS constellation supports a tighter accuracyand containment, with the potential to eliminate obstacles and reduce minima required with LNAV.”

PBN for rotary wing operations has significant potential to improve reliability and safety as well as air traffic management. However, it still has  to develop a critical mass. While the availability of technology installations and upgrades put PBN within easy reach for operators, without the sup- port of air navigation service providers (who must develop more public PBN procedures) and industry regulators (who must oversee the opera- tors wanting to upgrade to PBN capability), the benefit of PBN operations for the helicopter community will remain largely unfulfilled.
www.verticalmag.com    June/July 2016

 

Tuesday, April 12, 2016

United Flies First RNP Procedures in Micronesia

Woodrow Bellamy III

[Avionics Magazine 04-12-2016] United Airlines recently completed a project in the Federated States of Micronesia designed to take advantage of the advanced navigation capabilities of its airline fleet, increase safety, and generally make United pilot’s lives easier there. Working with FAA and ICAO’s third party Air Navigation Service Provider (ANSP) Hughes Aerospace Corp., the airline is now using Micronesia’s first ever Area Navigation (RNAV) Required Navigation Performance (RNP) procedures at Pohnpei International Airport.
RNAV RNP final approach at Pohnpei International Airport. Photo: Hughes Aerospace.
United is one of the only international carriers servicing the 6,800-foot runway at Pohnpei, and has needed the new procedures for years. The airport has no radar coverage, is surrounded by challenging terrain and has been limited ground-based and RNAV GPS approaches. With this in mind, the airline decided to take advantage of the advanced RNP navigation capabilities featured on its fleet of Boeing 737s.
“United has been flying to the islands of Micronesia for many years. Many of the islands, including Pohnpei, only had ground-based approaches known as Non-Directional Beacon (NDB) approaches. The FAA did add RNAV (GPS) approaches but they generally have paths across the ground similar to the NDB. In the case of Pohnpei, this meant the approach was at an angle to the runway. The new procedure offers a straight in approach so the pilots are lined up with the runway when they break out of the clouds,” Ron Renk, chief technical pilot at United Airlines told Avionics Magazine.
The new RNP procedures at Pohnpei provide United pilots with vertical guidance down to the runway surface, lowered instrument approach minimums from 920 feet and 3 miles, to 259 feet and 1 mile. Hughes Aerospace worked with United to complete the design, validation and publishing of the new procedures within four months, and the airline has now begun using them.
United will also now benefit from reduced fuel burn and carbon emissions at Pohnpei.
“The new approach offers many benefits over the approach it supplements. The flight path is optimized with is connection to the enroute airspace, saving fuel and CO2 emissions. It also has lower minimums, meaning we can more reliably get into Pohnpei even when there is [bad] weather. By far though, the best thing for us is the increase in safety offering a straight in approach versus the offset RNAV (GPS) approach,” said Renk.
Chris Baur, CEO of Hughes Aerospace, worked with Renk as a third party service provider to lead the deployment of RNP at Pohnpei. He told Avionics Magazine that the use of the new procedures are projected to lead to some significant fuel savings for United as well.
“We wanted to provide a stabilized approach, that lines up with the runway with vertical guidance to the surface, and the other thing we did is to reduce the amount of track miles to fly this procedure, by pulling them in closer to the island. We think that this procedure should save the airline $100,000 to $150,000 per year in fuel costs,” said Baur. “When we design a procedure, we try to get the lowest minimums at the highest RNP value, meaning we try to get the lowest minimums at a .3, so that the largest number of aircraft can have success operating an approach. But that’s not always possible, because of terrain, obstacles or other situations.”
The new approaches deployed at Pohnpei are similar to PBN procedures that the FAA has been deploying throughout the U.S. National Airspace System (NAS) under its NextGen program. According to the agency’s latest reported information, 59 percent of air transport category registered aircraft in the U.S. are equipped to perform RNP 1 with curved path procedures, while nearly 100 percent are equipped with avionics to fly more basic forms of PBN such as RNAV 1, RNAV 2 and RNP Approach.
Baur said one of the keys to deploying the new procedures in Pohnpei, is the process that the FAA has developed for redesigning airspace to allow properly equipped aircraft to choose the best path and approach to airports with challenging terrain.
“Even 10 years ago, the avionics for RNP were not consistent throughout the industry. And that’s changed and evolved significantly over the last 10 years. The FAA’s regulatory process has evolved significantly as well. That allows you to develop these types of procedures,” said Baur.

“I’ve been flying since 1979 and I’m blown away by how far we have come. The FAA deserves a lot of credit because they incubated, a lot of this. We have worked with them on it over the years; they are the ones who put this whole plan together. While I think they catch a lot of heat about NextGen, at least from our perspective we think they are doing a great job with NextGen and we enjoy the opportunity to work with them on the implementation of things like this,” he added.

 

– See more at: http://www.aviationtoday.com/av/navigation/87612.html?hq_e=el&hq_m=3234278&hq_l=2&hq_v=6f0a49e6a3#.Vw5tyfkrKM8 

Aviation Week & Space Technology
John Croft
Feb 19, 2016

A new breed of procedure designers is mapping fast lanes above and beyond.

Sky Architects

Building highways in the sky requires getting your feet dirty. Luckily, I wore boots the day I accompanied a team from Hughes Aerospace Corp. through the ranchlands of Cisco, a tiny rural town smack dab in the middle of Texas. Today’s job: validating a slate of new performance-based navigation (PBN) procedures that Hughes built  for the operators of a new airport in Cisco. At the edge of the Angle R property, adjacent to an approach path, a tree limited the minimum altitude for a certain approach; its height had to be verified for a final data package to be sent to the FAA for approval of the procedures.

route

A key step in gaining approval for PBN procedures is a validation flight, a track of which is shown in lavender for the new airport in Cisco, Texas. Credit: Hughes Aerospace

What is unusual at Gregory Simmons Memorial Airport is that the owners, with a small fleet of Cessna and Bombardier business jets, did not look to install any land-based instrument approaches: They jumped right into the future. That future will largely consist of approaches and departures defined by global navigation satellite systems (GNSS), GNSS augmentation systems, GNSS-based landing systems, or required navigation performance (RNP) avionics—rather than procedures linked to traditional land-based systems such as VORs or instrument landing systems. Along with lower costs—no ground infrastructure has to be purchased and maintained—PBN is more efficient, allowing for more direct routes, safe passage around obstacles and an associated reduction in fuel burned and carbon emissions. Continue reading

Aviation Today :: Global PBN Deployment Arrives in Middle East

Woodrow Bellamy III
[Avionics Today 10-07-2015] Oman Air is using Performance Based Navigation (PBN) to simplify approaches into an airport with one of the most challenging terrains in its network, thanks to new procedure work performed by Hughes Aerospace and Honeywell. The national airline of Oman is currently flying the first Area Navigation (RNAV) approaches to be deployed in the region at Khasab Airport.
 
The Khasab Airport runway where Oman Air is now flying RNAV visual approaches. Photo: Hughes Aerospace.
According to Ricardo Jaramillo, manager of fleet training for Oman Air, the airport sits at the northeastern gulf coast of Oman with a number of different flight environmental challenges.
“Over the last three years we’ve started flying our ATR aircraft fleet into this airport, which is quite challenging. The airport is in between a valley, and you have mountains about 3,000 to 4,000 feet high surrounding it as well. The weather is also a challenge with high winds often creating a turbulent environment with a very limited flight envelope to operate within,” Jaramillo told Avionics Magazine. The Oman Air fleet manager also noted that the airline is introducing the Embraer 170 into its fleet, and the Oman civil aviation authority required a new approach into Khasab to allow them to start flying that aircraft to the airport used primarily for the military.
Hughes Aerospace CEO Chris Baur has been working in partnership with Honeywell Aerospace all over the world to implement PBN procedures and help airlines and operators deal with challenging terrain, reduce approach times and fuel burn during the approach phase of flight. At Khasab, Hughes, which is a globally credentialed third party Air Navigation Services Provider (ANSP) licensed to develop instrument procedures in Oman,  looked to introduce the RNAV Visual approach to deal with the airport’s unique challenges.
“RNAV Visual is a type of approach that we initiated in the United States with the FAA several years ago. The purpose of the RNAV Visual is allowing the [Flight Management Computer] FMC to provide guidance to the pilot for a stabilized approach onto a runway,” said Baur. “The challenge for Oman was getting in and out of Khasab and giving the pilots flight guidance; but they didn’t need guidance that was going to take them down to the approach minimums. Oman’s pilots were able to land the aircraft in [Visual Meteorological Conditions] VMC, but they just didn’t have a feasible approach. RNAV visual approaches give the aircraft a stabilized and well-defined path to and from the runway as long as the pilots can maintain VMC.”
Captain Jean Hersen, an Airbus flight operations expert, presented the benefits of the concept of operations for RNAV Visual approaches during an Airbus Winter Regional Seminar earlier this year. Hersen’s presentation cites research from an ICAO Operations Panel working paper on the concept of operations for RNAV visual approaches. According to Hersen’s presentation, the requirements for an RNAV visual approach are for storage and access from a Flight Management System (FMS) database. Also, the pilot of the aircraft must verify the aircraft capability matches navigation requirements for Radius to Fix (RF) leg capability and GPS accuracy. Flight crews can request RNAV visual approaches only upon verification that the required visual meteorological conditions exist, requirements are met, and the aircraft is in a position where the approach can be managed within the flight envelope of a normal approach.
Hughes Aerospace and Honeywell have been collaborating on similar PBN projects at airports in the Asia Pacific region, the United States and elsewhere, and Khasab marks the first deployment of an RNAV visual approach in the Middle Eastern region.
Back in the United States, Honeywell provides major support to such projects by adding the approaches that are coded and submitted to them by Hughes into their available software upload-able FMS navigation database.
“Hughes will develop the procedures and code them and then they send the information to us at the navigation database production group and we will build a navigation database. The database will then be tested. We fly it, we partner with our pilots group here at Honeywell, and we take it to our simulation bench and actually fly it to verify that the procedure flies correctly. We videotape it as well before sending the database to Hughes and the customer that’s going to do the flight validation and testing,” Scott Roesch, product support manager for the navigation database production team at Honeywell Aerospace told Avionics Magazine.
Roesch leads a team that updates 1,200 databases for various civil aviation authorities and operators all over the world every 28 days.
“Our database engineers, normally we go back and forth with the procedure designer at Hughes to make sure that the proper line types and path terminators are featured and everything that is associated with building the navigation database and the coding to spec is correct. Once it is error free, we take the ARINC 424 data and convert it into a binary format which is readable and useable on our FMS,” said Roesch. “We then build a database which is compatible to the specific aircraft FMS that will use the new procedures and make it available via our website. Whoever the customer is, whether it be the Oman Civil Air Authority, or an airline, we give them authorization to go onto our website, download the database, create it themselves on their specific media type and then they can load it onto the aircraft.”
Oman Air is now flying the new RNAV visual approaches at Khasab.
“We were lacking in a proper re-useable procedure, as we were relying on an internally created procedure, where we added some coordinates and we were following certain inputs into the [Global Navigation Satellite System] GNSS, essentially in a make-shift way. It was not an easy procedure so there were constant changes to the coordinates or the waypoints by the airline. But the one created by Hughes is an easy procedure, an easy database and nobody can modify it,” said Jaramillo.
The Khasab runway was recently resurfaced to support civil aircraft operations, although Oman’s air navigation authority required an instrument procedure for approval to use the airport.
“With a jet aircraft at Khasab, in order to get approval to fly there, we had to have an instrument procedure. This was the tool that gave us the approval because the Oman authority did not want the aircraft to land there without an instrument procedure. The RNAV Visual was the solution, because we did not have the capability for obtaining approval for [Required Navigation Performance Authorization Required] RNP AR,” Jaramillo explained.
Khasab could be the first of many RNAV Visual and other variations of PBN procedures introduced into the region, he added.

“This is a start; there is always a starting point and I think now we have changed the mentality of so many people here with the procedure, especially the authority. They saw it can be done and we are getting more confident. I believe there is room for another one here, and perhaps other areas throughout the region as well,” said Jaramillo.

http://www.aviationtoday.com/the-checklist/Global-PBN-Deployment-Arrives-in-Middle-East_86236.html#.VhZqQ9_rumE

 

Wednesday, August 12, 2015

Woodrow Bellamy III

[Avionics Today 08-12-2015] Operators using Myanmar’s two busiest international airports, Mandalay and Yangon, can finally begin using Performance Based Navigation (PBN) practices after the country’s civil aviation authority approved and validated their first ever GPS-based procedures, which were badly needed in the country. Both airports have now unlocked the use of PBN, after flight validations were completed at the end of July through collaboration between experts from Hughes Aerospace and Honeywell.
 
Chris Baur, CEO of Hughes Aerospace, working with a team of Myanmar pilots to implement the country’s first PBN procedures.
Photo: Hughes Aerospace
Using a Cessna Caravan equipped with a retrofitted Garmin G1000 avionics package, Chris Baur, CEO of Hughes Aerospace, lead a team of Myanmar pilots through the first-ever PBN validation flight in Myanmar.
“The Department of Civil Aviation (DCA) of Myanmar wanted to implement their first ever [Global Navigation Satellite System] GNSS procedures starting with the main airport of Yangon. They wanted a GNSS procedure to both ends of the runway and then [Standard Instrument Departures] SIDS and [Standard Terminal Arrival Routes] STARS, based on GNSS,” Baur told Avionics Magazine. “The government was eager to get them implemented, and derive the benefit of having SIDS and STARS, which they haven’t had before. The traffic there is definitely growing quite quickly, so this should help to address that growth.”
Airlines and operators flying into both Mandalay and Yangon can begin using the new procedures immediately, Baur said. Operators will not be required to become certified or undergo any training there, as the majority of international carriers flying with modern aircraft have the avionics equipage and pilot training necessary to fly PBN procedures.
Like the rest of the country, Myanmar’s airspace was ruled by a military junta until 2012 and had never undergone modernization of its aviation infrastructure. Over the last several years though, the Myanmar government has been rapidly modernizing its economy, and its airports.
“Their initial excitement was to get into the PBN global movement and do this with GNSS approaches,” said Baur. “When we did the flight validation, we brought all of our own flight validation equipment and put it in their aircraft and conducted the flight validation and recorded the flight tracks. The aircraft flies the procedure and then we record the aircraft’s position independent of the aircraft system to validate it. What you’re mainly looking for, aside from recording flight tracks, is the ‘flyability’ of the procedure, ensuring that the aircraft is able to maintain the descent or maintain the crossing restrictions.”
While the initial benefits will mainly be around the safety and flight operational efficiency of aircraft flying into and out of Yangon and Mandalay, implementing PBN also serves as a foundation to manage future air traffic growth in the region. The Airbus Global Market Forecast for 2015-2034 has predicted that the Asia-Pacific region will lead the world in air traffic by 2034.
Myanmar is the second major GNSS procedures project that the Hughes-Honeywell partnership has completed this year, following the implementation of GBAS approaches in China early this year. Honeywell, like most other major U.S.-based suppliers, sees Myanmar and the greater Asia-Pacific region as a major area of growth for the global aviation industry. Growth begins with projects such as the recently completed ones in Myanmar, and continues with aircraft equipage and air traffic management modernization, according to Michael Underwood, director of business development at Honeywell Aerospace.
“We view the aviation ecosystem in the Asia Pacific as a high growth region,” said Underwood. “As such, we’re working across the full spectrum to help move and modernize not just the airplane fleets but the overall aviation infrastructure.”
Beyond Myanmar, Honeywell and Hughes are in similar talks with other Asian-Pacific countries for aircraft navigation modernization projects.

“We recently opened discussions with the civil aviation authority of Sri Lanka to talk about their PBN needs. They heard about what we have done in Myanmar,” said Underwood. “We’ve had similar discussions in Indonesia, the Philippines, so we’re very active in that region and working to help modernize the air traffic infrastructure there.”

– See more at: http://www.aviationtoday.com/av/topstories/Myanmar-Implements-its-First-PBN-Procedures_85774.html?hq_e=el&hq_m=3131201&hq_l=9&hq_v=c84bd0d89e#.Vd8JtflVikr

Woodrow Bellamy III

[Avionics Today 05-26-2015] China’s Civil Aviation Administration (CAAC) has unlocked a new capability for reducing delays and increasing efficiency at the country’s most congested airports that could be ready for live operational use by the end of this year. A recent flight demonstration by Honeywell and Hughes Aerospace showed the benefits of the SmartPath Ground Based Augmentation System (GBAS) for next generation GPS-based precision landings.
 
A cockpit display shows the GLS approach into Pudong Airport used during the April flight demonstration. Photo: Hughes Aerospace.
Using a China Eastern Airlines Airbus A321 and a Shangdong Airlines Boeing 737-800, flight crews demonstrated the first ever Global Navigation Satellite System (GNSS) instrument approaches in China at the end of April. To enable these precision landings, SmartPath’s four ground-based antennas take an aircraft’s GPS signals and sends them to a single box located on the airport, which then correlates the signals for a high degree of integrity before beaming it back up to the aircraft for precision landing guidance.
“The CAAC, knowing that they needed to have some very flexible alternatives to the legacy [Instrument Landing System] ILS, they asked us to do some very innovative approaches with the system,” said Brian Davis, vice president of airlines, Asia Pacific at Honeywell Aerospace. “Honeywell and our partner Hughes Aerospace, we actually designed and created the flight paths into Pudong airport, not only for the standard approaches but we did four very flexible innovative approaches that have never been done by a commercial airline before. The first one was what we called a displaced threshold, the second was a variable glide-path.”
Hughes Aerospace CEO Chris Baur also noted that the demonstrations were done in Instrument Meteorological Conditions (IMC), providing a real world flight environment for the airline pilots.
“We built GLS approaches to all of the runways at Pudong,” said Baur. “We built GLS approaches to 35L and 35R and 17L and 17R. Then we did something that hasn’t been done anywhere before where we built multiple GLS approaches to one runway. For Runway 35L, we built a straight-in GLS approach and variable geometric path approaches, one with a 2.8 degree flight path angle and one with a 3.2 degree flight path angle.
Baur said the team also built two non-linear curved path, or XLS, approaches for Runway 35L, and the approach was flown to an automatic landing in IMC conditions. The trial flights provided a demonstration that exploited all of the benefits of the SmartPath technology, such as the ability to merge GLS with Required Navigation Performance (RNP) procedures to create a custom path to the runway based on the type of aircraft being flown.
Hughes Aerospace CEO Chris Baur and the flight crew from Shangdong Airlines that performed the precision landings demonstrations. Photo: Hughes Aerospace.
Davis says the implementation of the new procedures at Pudong can provide a model for dealing with wake turbulence issues from different aircraft as well. With heavier aircraft such as Boeing 747s, 777s or Airbus A380s dispersing an enormous amount of wake turbulence from the wings, aircraft in trail behind them are often forced to maintain very lengthy separation distances. An airport as busy as Pudong can face huge efficiency challenges when this happens.
“The variable glide-path allows the SmartPath station to send a signal to the aircraft that will allow it to fly a 2.8 or 2.9 or basically any glide-path you would like. It allows pilots to fly a much shallower glide-path than they would with an ILS,” said Davis. “SmartPath allows for up to 26 different approach combinations. That means for the same runway you can have an approach at a 2.8 degree glide-path. That’s where you bring the A380s and the Boeing 777s in. To the exact same runway, you can actually have the SmartPath station send a signal on a different channel to the smaller aircraft that will allow it to come in at a 3.1 degree glide-path, for example, so wake turbulence always disperses downward. If we bring those larger aircraft in at a shallow glide-path and the smaller aircraft in at a steeper glide-path, that means the 737 and A320 are always above the wake turbulence footprint of the larger aircraft.”
SmartPath has already been deployed in Australia, Brazil, Germany, Spain and Switzerland, and CAAC sees it as one of the key tools for managing future increases in air traffic. The International Air Transportation Association (IATA) expects China to have 415 million air travel passengers annually by 2016, which would be second only to the United States in domestic passenger volume.
According to Davis, the majority of aircraft coming off of production lines today are equipped with Multi-Mode Receivers (MMR) capable of performing GBAS landings and the localizer guidance and glide slope guidance for a SmartPath approach looks the same to a flight crew as if they were flying an ILS approach.
Going forward, the new procedures must now be certified by the CAAC and Air Traffic Management Bureau.

“We should have this station up and certified by the end of 2015, or the early part of 2016 with many airlines ready to fly the new GBAS procedures shortly thereafter,” said Davis.

– See more at: http://www.aviationtoday.com/av/commercial/China-Eastern-Shangdong-Demonstrate-GBAS-at-Pudong_85121.html#.VWXotflVikq